DSSA/GMU Domain Modeling Workshop
September 8-9, 1994

Domain Models in the Synthesis Methodology
Grady Campbell

The objective of the Synthesis project, beginning in 1990, has been to define and disseminate a
viable methodology for reuse-driven software development. Our approach was to bound the
problem by restricting our scope to domains that arise from and are directly traceable to an
organization’s business objectives. The resulting methodology is documented in a comprehensive
guidebook (RSP 1993) for experienced engineers and managers and has been validated as effective
by projects in Rockwell, Boeing, Martin-Marietta, and Lockheed, including the Boeing/Navy
STARS demonstration project.

In this position paper, we define, from a perspective of the reuse-driven/domain-specific
engineering of software-intensive systems, what a domain model is and its possible uses. For
purposes of context, we view a reuse-driven engineering process as being comprised of two
activities: domain engineering and application engineering. Application engineering is the creation
and support of an application product (that is, a system and all associated work products) for a
customer. Domain engineering is the creation and support of an organization’s application
engineering capability. We refer to the product of domain engineering as a domain by which we
mean to denote a product family, corresponding to a set of systems that will solve similar problems
for a targeted business-area market, and a (application engineering) process for the production of
individual products for particular customers.

What is a Domain Model?

A model is a representation of a thing (its subject) that enables the determination of (approximate)
answers to designated questions about the thing itself. Within the context of Synthesis, a domain
denotes a set of systems that solve similar problems. Therefore, a domain model is any
representation of a set of systems that enables the answering of designated questions about those
systems or about the problems they solve.

A domain model should enable answers to questions about the requirements of systems within the
domain, about the design of those systems, and about the implementation of those systems. Because
a model by its nature is only an approximate representation of its subject, a domain model will not
provide answers to all possible questions and the answers it can give may be only approximations
of the true answer. A model is, however, acceptable if its answers are sufficiently accurate (not
misleading) within explicit bounds and they are obtainable at much lower cost and effort than is
otherwise obtainable (for example, by observing the subject itself).

In Synthesis, the subject that a domain model represents is a product family. A product family is
described in terms of the requirements, design, and implementation of products in a domain and the
variations that distinguish among those products. For flexibility, a product family can be represented
informally, in terms of conventional forms of work products used by practicing engineers, or it can
be represented in more formally-defined notations.

What are the Uses and Criteria of a Domain Model?

There are four potential uses of a domain model from our perspective: as a shared repository of the
knowledge that underlies a domain, as a resource for educating engineers about the domain (that is,
to impart domain knowledge), as a predictor of properties of systems within the domain, and as a
formalization for generating a product. A domain model, for any of these uses, may be passive,
enabling questions to be answered by inspection of represented knowledge, or active, responding
to a set of prescribed questions whose answers are derivable from that knowledge.



The first potential use, as a repository of shared knowledge, is fundamental. Any domain model
inherently serves this purpose, although it may only be implicit. For many organizations, this use
alone is sufficient to justify the creation of a domain model. Although this use requires a disciplined
process of knowledge acquisition, the domain model may be informally expressed. Communication
among knowledgeable parties does not require formally-defined notations but does lend itself to
specialized (concise or abbreviated) notations. This informal level alone is sufficient to enable
effective reuse-driven software development.

The second potential use, as a resource for education, is directly derivative of the first use. This use,
however, is not implicit to the first use in that the domain model may not be sufficiently tutorial.
It may require some level of knowledge and experience before it can be understood. For tutorial
use, the domain model must include not only expert-level shared knowledge about the domain but
be elaborated with novice- and intermediate-level explanations, rationale, and examples.

The third potential use, as a predictor of systems’ properties, is closest in spirit to the domain model
as a model. For this use, there must be an understanding not only of the problems that included
systems solve and how those systems are constructed but also why the systems are constructed that
way and the trade-offs in alternative constructions. The difficulty of creating such a model depends
in large part on the questions that application engineers need it to help them answer. Although a
formalized notation is not necessarily incompatible with the preceding uses, it is essential to this use
because many properties are derivative of and interact with other properties rather than being
explicit in domain knowledge.

The fourth potential use, as a formalization for generating a product, requires the expression of
domain knowledge in sufficient detail to define a transformation from perceived needs (that is, a
problem) to a product (a corresponding solution). Some approaches to this, arising from research
in artificial intelligence and software process modeling, propose a formally-defined notation and
associated sets of domain-independent and domain-specific transforms intended to mimic the
process that engineers follow to create software. The approach in Synthesis, arising from research
in software engineering methods, is to express domain knowledge in a ‘compiled’ form, as a set of
adaptable work products (after all, work products are in essence compiled domain knowledge). This
use requires more formalized expression of domain knowledge at greater levels of explicit detail
over greater breadth than any of the other uses.

A comprehensive domain model within the context of reuse-driven engineering must define the
motivations, form, and content of a product family. This includes the form and content of all
associated work products, encompassing requirements, design, and implementation viewpoints. It
must be understandable by other domain experts and usable by application engineers as far as is
required by the application engineering process to create acceptable products cost-effectively. An
effective paradigm for domain engineering goes further, providing a framework for the concurrent
engineering of a product family and an associated production process.

Methods for Domain Analysis

The Synthesis guidebook (RSP 1993) prescribes methods for domain engineering consonant with
the objective of reuse-driven engineering. These methods guide domain engineers who are domain
and software experts to organize and express domain knowledge in a form that enables a streamlined
application engineering process. Domain engineering methods address management, domain
definition, product family engineering, process engineering, and (application engineering) project
support. Methods for developing a domain model fall within product family engineering and build



on methods for developing system/software requirements, design, and implementation models,
extending them to consider the implications of variability across a family.

The Synthesis approach constrains a domain to a set of systems that meet similar needs. Systems
that meet similar needs tend to be viewable as having well-constrained variabilities within a
framework of substantial commonalities. By extracting the variabilities among the systems (and
their associated work products) and formulating them as a set of deferred decisions representing the
supported range of needs, it is viable to construct adaptable work products to which resolved
decisions, based on particular needs, can be applied to create a tailored product. A product, and
therefore the application engineering process, becomes a function of the deferred decisions that
characterize the domain represented by a product family.

References

RSP 1993 Reuse-Driven Software Processes Guidebook, SPC-92019-CMC,
version 02.00.03. Herndon, Virginia: Software Productivity
Consortium.

Acknowledgments

This material is based in part upon work sponsored by the Advanced Research Projects Agency
under Grant # MDA972-92-J-1018. The content does not necessarily reflect the position or the
policy of the U.S. Government, and no official endorsement should be inferred.



